Podcast | 04/04/2023

Mikrobit tahkovat meille uusia lääkkeitä

Ihmisen kasvuhormonia ei tarvitse enää eristää vainajilta eikä insuliinia sioista. Geenitekniikan avulla niiden tuotanto on siirretty mikrobeihin. Tulevaisuudessa mikrobien avulla tuotetaan yhä isompi osa lääkkeistä.

Suomen Lääketieteen säätiön kuusiosaisessa “Ihmiskunnan viholliset — ja uskolliset ystävät”-sarjassa puhutaan mikrobeista. Kuudennessa jaksossa tiedetoimittaja Mari Heikkilän haastateltavina ovat molekyylilääketieteen professori, geenihoitoja vuosikymmenten ajan kehittänyt Seppo Ylä-Herttuala Itä-Suomen yliopistosta ja Turun yliopiston biokemian professori Mikko Metsä-Ketelä, joka tutkii muun muassa uusia antibiootteja. Säätiön Tulevaisuuden lääketiedettä -podcastin kaikki jaksot ovat  kuunneltavissa Spotifyssä, Soundcloudissa  ja muilla podcast-alustoilla.

Diabeteksen hoidossa käytettävä insuliini jouduttiin aikoinaan eristämään lehmien tai sikojen haimasta ja ihmisen kasvuhormoni vainajilta kerätyistä aivolisäkkeistä. Molemmat lääkkeet saadaan nykyisin valmistettua mikrobeissa, kuten monet muutkin lääkkeet. Esimerkiksi monet antibiootit ja syöpälääkkeet, interleukiini, interferoni ovat mikrobien tuottamia. Vasta-aineita ei tarvitse enää tuottaa kaneissa tai marsuissa, sillä ne tuotetaan geenitekniikoiden avulla soluviljelmissä.

Mikrobien avulla olemme oppineet tutkimaan perimää, diagnosoimaan sairauksia, sekvensoimaan ihmisgenomia ja kehittämään lääkkeitä ja geenihoitoja vaikeisiin sairauksiin. Tuore esimerkki on suomalaisen tutkimuksen pohjalta kehitetty virtsarakkosyövän geenilääke, joka sai joulukuussa 2022 myyntiluvan Yhdysvalloissa. Kuopiossa valmistettava lääke, Adstiladrin, on täsmälääke pinnallista virtsarakon syöpää sairastaville potilaille.

Suomalaisen tutkimuksen pohjalta kehitetty virtsarakkosyövän geenilääke sai joulukuussa 2022 myyntiluvan Yhdysvalloissa.

“Geenihoidon malli on kaapattu viruksilta. Lääke on tehty mikrobiologian kautta tulleilla työkaluilla ja se on tuotettu bioreaktoreissa, jotka perustuvat mikrobiologiaan”, Itä-Suomen yliopiston professori Seppo Ylä-Herttuala kertoo.

Kaiken kaikkiaan geenilääkkeitä on länsimaissa jo markkinoilla toistakymmentä — ja lisää on luvassa. Samaan aikaan yleistyvät myös muut biologiset lääkkeet, kuten autoimmuunisairauksien ja syöpien hoidossa käytettävät monoklonaaliset vasta-aineet.

“Jos katsotaan, millaisia uusia lääkeaineaihioita on eri vaiheiden kliinisissä tutkimuksissa, huomattava osa niistä on biologisia lääkkeitä”, Turun yliopiston biokemian professori Mikko Metsä-Ketelä toteaa.

Biologiset lääkkeet tuotetaan aina soluissa, tyypillisesti bakteeri-, hiiva- tai eläinsoluviljelmissä. Tuotannon siirtämisessä soluihin hyödynnetään geenitekniikan keinoja, jotka on kehitetty mikrobien avulla.

Entsyymejä kuumissa lähteissä eläviltä mikrobeilta

Geenitekniikat alkoivat kehittyä 1970-luvulla, kun yhdysvaltalaistutkijat kehittivät E.coli -bakteerin avulla yhdistelmä-dna-teknologian eli menetelmän, jolla dna:ta voidaan yhdistää kahdesta eri organismista. Dna:ta opittiin leikkaamaan ja liimaamaan sekä siirtämään mikrobista toiseen. Tässä tarvittavat entsyymit löydettiin bakteereista ja viruksista.

Dna:ta eri kohdista leikkaavia restriktioentsyymejä löydettiin bakteereista satoja. Bakteereilla on tällaisia aseita laaja arsenaali, sillä niiden avulla ne pilkkovat kimppunsa hyökkäävän faagin eli bakteeriviruksen perimän palasiksi. Sittemmin bakteereilta löydettiin myös toisenlainen keino, jolla ne pilkkovat vierasta perimää, CRISPR-Cas9-järjestelmä. Tutkija Emmanuelle Carpentier ja Jennifer Doudna kehittivät siitä välineen ihmisperimän muokkaukseen, “geenisakset”, vuonna 2012. He saivat Nobelin kemian palkinnon vuonna 2020.

Bakteereilla on tällaisia aseita laaja arsenaali.

“Voidaan olettaa, että vastaavia metodeja, joilla mikrobit puolustavat itseään, löytyy vielä lisää. Niistä saadaan uusia työkaluja lääketieteen perustutkimukseen ja jopa ihan kliiniseen hoitoon. Ensimmäiset geenisaksia hyödyntävät kliiniset kokeet ovat jo menossa”, Ylä-Herttuala kertoo.

Mikrobeja on kiittäminen myös siitä, että saimme menetelmät dna:n sekvensointiin ja ihmisperimän tutkimiseen. Tärkeä edistysaskel oli, kun yhdysvaltalaistutkija, nobelisti Kary Mullis kehitti vuonna 1983 PCR-menetelmän. Sillä voidaan monistaa organismin perimästä haluttua dna-pätkää siten, että sitä saadaan valtava, miljardikertainen määrä. Menetelmässä tarvittavat entsyymit löydettiin mikrobeista, jotka elivät erikoisessa ympäristössä.

“Toimivat entsyymit löydettiin kuumista lähteistä. Siellä oli evoluutio valikoinut bakteereita, joilla oli kuumissa olosuhteissa toimivia dna:ta kopioivia entsyymejä, polymeraaseja. Siten saatiin PCR toimimaan tehokkaasti”, Ylä-Herttuala toteaa.

Lääkkeiden tuotanto mikrobeissa yleistyy

Nykyisistä lääkkeistä iso osa on niin sanottuja pienimolekyylisiä yhdisteitä, jotka pystytään valmistamaan kemiallisesti. Esimerkki tällaisesta perinteisestä lääkeaineesta on pajunkuoresta alun perin eristetty särkylääke aspiriini, jota valmistetaan kemiallisen synteesin avulla. Kemiallinen valmistus käy kuitenkin hankalaksi, mitä isommasta ja monimutkaisemmasta lääkemolekyylistä on kyse — eikä se onnistu lainkaan biologisten yhdisteiden, kuten proteiinilääkkeiden tai vasta-aineiden kohdalla. Ne tehdään mikrobien avulla.

Mikko Metsä-Ketelän mukaan viime vuosien kiinnostava ilmiö on, että mikrobeja on ryhdytty kokeilemaan aiempaa laajemmin myös pienimolekyylisten lääkeaineiden valmistuksessa. Esimerkiksi aspiriinia on jo onnistuneesti kokeiltu tuottaa mikrobissa, johon on siirretty tuottoa varten tarvittavat geenit pajusta.

Isoja lääkeaineiden biosynteesireittejä on siirretty hiivaan ja ne ovat alkaneet toimia.

“Hyvin monia yhdisteitä on kyetty tuottamaan hiivasoluissa. Esimerkiksi erilaisia opioideja, joita käytetään kivunlievitykseen, on jo valmistettu. Kokonaisia isoja biosynteesireittejä on siirretty hiivaan ja ne ovat alkaneet toimia”, Metsä-Ketelä kertoo.

Lääkeaineiden biosynteesiä mikrobeissa pystytään myös muokkaamaan. Tällöin niistä voidaan pyrkiä kehittämään esimerkiksi aiempaa tehokkaampia tai vähemmän sivuvaikutuksia aiheuttavia. Esimerkiksi kun opioideja tuotetaan mikrobeissa, voidaan lisätä biosynteesiin uusia geenejä ja siten mahdollisesti tehdä johdannaisia, jotka toimisivat paremmin kivunlievitykseen.

“Tämä synteettisen biologian ala on nyt nousemassa kemiallisen synteesin rinnalle”, Metsä-Ketelä kertoo.

Kiinnostaako aihe? Kuuntele lisää mikrobien hyödyntämisestä lääketieteessä Lääketieteen Säätiön podcastista ”Lääketieteen työjuhdat”. Suomen lääketieteen säätiön kuusiosainen podcast-sarja “Ihmiskunnan viholliset — ja uskolliset ystävät” käsittelee mikrobien merkitystä ihmisten terveydelle. Tämä on sarjan kuudes jakso. Tykkää podcastista Spotifyssä tai muilla podcast-alustoilla, niin saat tiedon, kun Tulevaisuuden lääketiedettä -podcastin seuraava jakso ilmestyy.
Lahjoita lääketieteen tutkimukseen